## Estimating Human Pose from Occluded Images

#### Jia-Bin Huang and Ming-Hsuan Yang

{jbhuang,mhyang}@ieee.org



Electrical Engineering and Computer Science University of California at Merced

ACCV, Xi' an, September , 2009

## What this talk is about

- Estimating human poses from single 2D images as a direct nonlinear regression
- Recovering poses even when humans in the scenes are partially or heavily occluded via sparse approximation
- Achieving (implicitly) relevant feature selection



- 2 Recovering Poses via Sparse Approximation
- Experimental Setups

## 4 Conclusions

# Introduction

#### Motion Analysis

- Diagnostics of orthopedic patients
- Analysis and optimization of an athletes' performances
- Content-based retrieval and compression of video
- Auto saftey: control of airbags, drowsiness detection, pedestrian detection, etc.

#### • Surveillance

- People counting or crowd flux, flow, and congestion analysis
- Analysis of actions, activities, and behaviors both for crowds and individuals

#### • Human Computer Interaction

• Virtual Reality

#### Motion Analysis

- Diagnostics of orthopedic patients
- Analysis and optimization of an athletes' performances
- Content-based retrieval and compression of video
- Auto saftey: control of airbags, drowsiness detection, pedestrian detection, etc.

#### Surveillance

- People counting or crowd flux, flow, and congestion analysis
- Analysis of actions, activities, and behaviors both for crowds and individuals
- Human Computer Interaction
  - Virtual Reality

#### Motion Analysis

- Diagnostics of orthopedic patients
- Analysis and optimization of an athletes' performances
- Content-based retrieval and compression of video
- Auto saftey: control of airbags, drowsiness detection, pedestrian detection, etc.

#### Surveillance

- People counting or crowd flux, flow, and congestion analysis
- Analysis of actions, activities, and behaviors both for crowds and individuals

#### • Human Computer Interaction

Virtual Reality

- Ambiguity: Loss of depth information
- Variations of shape and appearance of human body
- Background clutters
- Occlusions

In this paper, we address the problems of occlusions and background clutters.

## Model-based (Generative)

- Employ a know model (e.g., tree structure) based on prior knowledge
- Include two parts: 1) Modeling, 2) Estimation

[Felzenszwalb, Huttenlocher '00], [loeffe et al. '01], [Ronfard et al. '02], [Ramnan, Forsyth '03], [Mori, Malik, '04]

## Model-free (Discriminative)

- Example-based [Shakhnarovich et al. '03], [Poppe '07]
- Learning-based [Rosales, Sclaroff, '01], [Agarwal, Triggs '06], [Sminchisescu et al. '07], [Bissacco et al. 07], [Okada, Soatto '08]

# Recovering Poses via Sparse Approximation

## **Problem Formulation**

- Given: *N* training samples  $\{\mathbf{x}_1, \mathbf{y}_1\}, \{\mathbf{x}_2, \mathbf{y}_2\} \cdots, \{\mathbf{x}_N, \mathbf{y}_N\}$
- Input: test sample b
- Output: pose descriptor vector y



Input: single image

Output: pose

# Test Image as a Sparse Linear Combination of Training Images

Given *N* training samples x<sub>1</sub>, x<sub>2</sub>, · · · , x<sub>N</sub> ∈ ℝ<sup>m</sup>, we represent a test sample *b* by

$$\mathbf{b} = \omega_1 \mathbf{x}_1 + \omega_2 \mathbf{x}_2 + \dots + \omega_N \mathbf{x}_N$$

• Let 
$$A = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N] \in \mathbb{R}^{m \times N}$$
,

$$\mathbf{b} = A\omega,$$

where  $\omega = [\omega_1, \omega_2, \dots, \omega_N]^T$  is the coefficient vector.

• We want to find the sparsest solution of the linear system.

Recover the sparsest solution via  $\ell_1$ -norm minimization

•  $\ell_0$ -norm solution–NP hard

$$\min_{\boldsymbol{\omega}} \|\boldsymbol{\omega}\|_0 \quad \text{subject to} \quad \mathbf{b} = A \boldsymbol{\omega}$$

•  $\ell_1$ -norm solution–convex optimization problem

$$\min_{\omega} \|\omega\|_1 \text{ subject to } \mathbf{b} = A\omega$$

• Relaxed constraint on equality to allow small noise

$$\min_{\omega} \|\omega\|_1 \quad \text{subject to} \quad \|\mathbf{b} - A\omega\|_2 \le \epsilon$$

## Coping with Background Clutter and Occlusions

- When errors occur? 1) Misalignment, 2) Background clutter, 3) Occlusions.
- Introduce an error term e

$$\mathbf{b} = A\omega + \mathbf{e} = \begin{bmatrix} A & I \end{bmatrix} \begin{bmatrix} \omega \\ \mathbf{e} \end{bmatrix} = B\mathbf{v}$$

• Solve the extended linear system

min  $||\mathbf{v}||_1$  subject to  $\|\mathbf{b} - B\mathbf{v}\|_2 \le \epsilon$ 

Recovered test sample **b**<sub>R</sub> can be represented as Aω

## Occlusion Recovery: An Example



Figure: Occlusion recovery on a synthetic dataset. (a)(b) The original input image and its feature. (c) Corrupted feature via adding random block. (d) Recovered feature via find the sparsest solution. (e) Reconstruction error.

## Handling Background Clutter: An Example



Figure: Feature selection example. (a) Original test image. (b) The HOG feature descriptor computed from (a). (c) Recovered feature vector by our algorithm. (d) The reconstruction error.

## Settings

- 1.8 GHz PC with 2 GB RAM
- Matlab implementation

#### $\ell_1$ solver

- $\ell_1$  magic (second-order cone programming, SOCP)
- Sparse Lab
- Many other packages...

Regressor: Map image feature to pose vector

- Gaussian Process Regressor
- Relevant Vector Regressor [Agarwal, Triggs PAMI '06]
- Support Vector Regressor

## Settings

- 1.8 GHz PC with 2 GB RAM
- Matlab implementation

#### $\ell_1$ solver

- $\ell_1$  magic (second-order cone programming, SOCP)
- Sparse Lab
- Many other packages...

#### Regressor: Map image feature to pose vector

- Gaussian Process Regressor
- Relevant Vector Regressor [Agarwal, Triggs PAMI '06]
- Support Vector Regressor

## Settings

- 1.8 GHz PC with 2 GB RAM
- Matlab implementation

#### $\ell_1$ solver

- $\ell_1$  magic (second-order cone programming, SOCP)
- Sparse Lab
- Many other packages...

#### Regressor: Map image feature to pose vector

- Gaussian Process Regressor
- Relevant Vector Regressor [Agarwal, Triggs PAMI '06]
- Support Vector Regressor

## **Robustness to Occlusions**

## Synthetic data [Agarwal, Triggs PAMI '06]

- 1927 silhouette image for training and 418 images for testing
- Image descriptor: PCA and downsampled images
- Pose vector: 55-dimensional vector describe the joint angle (in degree)



## **Robustness to Occlusions**

Results on synthetic data set

 Estimating pose from original (blue), corrupted (green), and recovered (red) testing images



Figure: Average error of pose estimation on synthetic data set using different features: (a) PCA with 20 coefficients. (b) downsampled  $(20 \times 20)$  images.

Localized features are more suitable for error correction!

#### Real Database: HumanEva I [Sigal, Black TR '06]

- Synchronized image and motion capture data
- Four views of four subjects
- Six predefined actions (walking, jogging, gesturing, throwing/catching, boxing, combo)
- We use the common motion walking sequences of three subjects from the first camera

#### Synthesized testing images

• For each image, we randomly generate two occluding blocks with various corruption level for synthesizing images with occlusions.

#### Real Database: HumanEva I [Sigal, Black TR '06]

- Synchronized image and motion capture data
- Four views of four subjects
- Six predefined actions (walking, jogging, gesturing, throwing/catching, boxing, combo)
- We use the common motion walking sequences of three subjects from the first camera

#### Synthesized testing images

• For each image, we randomly generate two occluding blocks with various corruption level for synthesizing images with occlusions.

## **Robustness to Occlusions**

HumanEva I: Sample test images



Results on HumanEva data set

 Estimating pose from original (blue), corrupted (green), and recovered (red) testing images



Figure: Results of pose estimation on HumanEva data set I in walking sequences. (a) Subject 1. (b) Subject 2. (c) Subject 3.

## Robustness to Background Clutters

Implicit relevant feature selection

- Compared with the original feature representation (HOG), the estimations induced from recovered feature are better.
- The improvements of mean position errors (mm) are 4.89, 10.84, and 7.87 for S1, S2, and S3, respectively



Figure: Mean 3D error plots for the walking sequences (S2).

# Conclusions

- Spare approximation can be used for recovering errors resulted from occlusions when estimating humans from occluded images
- Without occlusions, the recovered features are still better than the original ones
- The recovery of feature representation is independent from the learning process, i.e., our method can be adopted as a preprocessing module of other model-free pose estimation approaches

# Thank You! Questions?