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What this talk is about
Estimating human poses from single 2D images as a direct
nonlinear regression
Recovering poses even when humans in the scenes are partially
or heavily occluded via sparse approximation
Achieving (implicitly) relevant feature selection
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Introduction
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Motivation - Applications

Motion Analysis
Diagnostics of orthopedic patients
Analysis and optimization of an athletes’ performances
Content-based retrieval and compression of video
Auto saftey: control of airbags, drowsiness detection, pedestrian
detection, etc.

Surveillance
People counting or crowd flux, flow, and congestion analysis
Analysis of actions, activities, and behaviors both for crowds and
individuals

Human Computer Interaction
Virtual Reality
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Key Challenges
Why the problem is difficult?

Ambiguity: Loss of depth information
Variations of shape and appearance of human body
Background clutters
Occlusions

In this paper, we address the problems of occlusions and background
clutters.
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Related Works

Model-based (Generative)
Employ a know model (e.g., tree structure) based on prior
knowledge
Include two parts: 1) Modeling, 2) Estimation

[Felzenszwalb, Huttenlocher ’00], [Ioeffe et al. ’01], [Ronfard et al. ’02],
[Ramnan, Forsyth ’03], [Mori, Malik, ’04]

Model-free (Discriminative)
Example-based
[Shakhnarovich et al. ’03], [Poppe ’07]
Learning-based
[Rosales, Sclaroff, ’01], [Agarwal, Triggs ’06], [Sminchisescu et al.
’07], [Bissacco et al. 07], [Okada, Soatto ’08]
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Recovering Poses via Sparse
Approximation
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Problem Formulation

Given: N training samples {x1, y1}, {x2, y2} · · · , {xN , yN}
Input: test sample b
Output: pose descriptor vector y

Input: single image Output: pose
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Test Image as a Sparse Linear Combination of
Training Images

Given N training samples x1, x2, · · · , xN ∈ IRm, we represent a test
sample b by

b = ω1x1 + ω2x2 + · · ·+ ωNxN

Let A = [x1, x2, · · · , xN ] ∈ IRm×N ,

b = Aω,

where ω = [ω1, ω2, . . . , ωN ]T is the coefficient vector.
We want to find the sparsest solution of the linear system.
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Goal: Find the sparsest solution
Recover the sparsest solution via `1-norm minimization

`0-norm solution–NP hard

min
ω
‖ω‖0 subject to b = Aω

`1-norm solution–convex optimization problem

min
ω
‖ω‖1 subject to b = Aω

Relaxed constraint on equality to allow small noise

min
ω
‖ω‖1 subject to ‖b− Aω‖2 ≤ ε
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Coping with Background Clutter and Occlusions

When errors occur? 1) Misalignment, 2) Background clutter, 3)
Occlusions.
Introduce an error term e

b = Aω + e = [A I]
[
ω
e

]
= Bv

Solve the extended linear system

min ||v||1 subject to ‖b− Bv‖2 ≤ ε

Recovered test sample bR can be represented as Aω
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Occlusion Recovery: An Example

Figure: Occlusion recovery on a synthetic dataset. (a)(b) The original input
image and its feature. (c) Corrupted feature via adding random block. (d)
Recovered feature via find the sparsest solution. (e) Reconstruction error.
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Handling Background Clutter: An Example

Figure: Feature selection example. (a) Original test image. (b) The HOG
feature descriptor computed from (a). (c) Recovered feature vector by our
algorithm. (d) The reconstruction error.
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Experimental Results
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Experimental Results

Settings
1.8 GHz PC with 2 GB RAM
Matlab implementation

`1 solver
`1 magic (second-order cone programming, SOCP)
Sparse Lab
Many other packages...

Regressor: Map image feature to pose vector
Gaussian Process Regressor
Relevant Vector Regressor [Agarwal, Triggs PAMI ’06]
Support Vector Regressor
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Robustness to Occlusions

Synthetic data [Agarwal, Triggs PAMI ’06]
1927 silhouette image for training and 418 images for testing
Image descriptor: PCA and downsampled images
Pose vector: 55-dimensional vector describe the joint angle (in
degree)

Sample test images

(a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 (f) 0.6

17 / 25



Robustness to Occlusions
Results on synthetic data set

Estimating pose from original (blue), corrupted (green), and
recovered (red) testing images

(a) PCA (b) Downsample

Figure: Average error of pose estimation on synthetic data set using different
features: (a) PCA with 20 coefficients. (b) downsampled (20×20) images.

Localized features are more suitable for error correction!

18 / 25



Robustness to Occlusions

Real Database: HumanEva I [Sigal, Black TR ’06]
Synchronized image and motion capture data
Four views of four subjects
Six predefined actions (walking, jogging, gesturing,
throwing/catching, boxing, combo)
We use the common motion walking sequences of three subjects
from the first camera

Synthesized testing images
For each image, we randomly generate two occluding blocks with
various corruption level for synthesizing images with occlusions.
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Robustness to Occlusions
HumanEva I: Sample test images

(a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 (f) 0.6
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Robustness to Occlusions
Results on HumanEva data set

Estimating pose from original (blue), corrupted (green), and
recovered (red) testing images

(a) S1 (b) S2 (C) S3

Figure: Results of pose estimation on HumanEva data set I in walking
sequences. (a) Subject 1. (b) Subject 2. (c) Subject 3.
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Robustness to Background Clutters
Implicit relevant feature selection

Compared with the original feature representation (HOG), the
estimations induced from recovered feature are better.
The improvements of mean position errors (mm) are 4.89, 10.84,
and 7.87 for S1, S2, and S3, respectively

Figure: Mean 3D error plots for the walking sequences (S2).
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Conclusions
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Conclusions

Spare approximation can be used for recovering errors resulted
from occlusions when estimating humans from occluded images
Without occlusions, the recovered features are still better than the
original ones
The recovery of feature representation is independent from the
learning process, i.e., our method can be adopted as a
preprocessing module of other model-free pose estimation
approaches
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Thank You! Questions?
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