

Goal

• Detecting moving objects in a scene

Input: Video sequence

Challenges

- Shadows may be misclassified as foreground because:
- 1) they are typically significantly different from background
- 2) they have the same motion as foreground objects
- 3) they are usually attached to foreground objects

Related Works

- Shadow detection with static parameter settings
- Require significant parameter tuning

Cannot adapt to environment changes Shadow detection using statistical learning methods

- [1] Shadow flow (Porikli et al., ICCV 2005)
- **[2]** Gaussian mixture shadow model (Martel-Brisson et al., CVPR 2005)
- ▶ [3] Local and global features (Liu et al., CVPR 2007)
- [4] Physical model of cast shadows (Martel-Brisson et al., CVPR 2008)

• Major Drawback:

All are pixel-based methods: need numerous foreground activities to learn the parameters.

Contributions

- A global shadow model learned from *physics-based features*.
- Does not require numerous foreground activities or high frame rates to learn the shadow model parameters
- Can be used for fast learning of local features in pixel-based models

Moving Cast Shadow Detection using Physics-based Features Jia-Bin Huang and Chu-Song Chen Institute of Information Science, Academia Sinica, Taipei, Taiwan E-Mail: jbhuang@ieee.org, song@iis.sinica.edu.tw

Results

(a)

(b)

(d) (e) Figure: (a) Input frame. (b) Background posterior probability $P(BG|x_p)$. (c) Confidence map by the global shadow model. (d) The shadow posterior probability $P(SD|x_p)$. (e) The foreground posterior probability $P(FG|x_p)$.

Quantitative Results

Sequence	High
Methods	η %
Proposed	70.83
Kernel [4]	70.50
LGf [3]	72.10
GMSM [2]	63.30

Mixture Learning

(c) The mean map w/o using confidence-rated learning.

(C)