Unsupervised Video Object Segmentation using Motion Saliency-Guided Spatio-Temporal Propagation

ILLINOIS

Yuan-Ting Hu¹ Jia-Bin Huang² Alexander G. Schwing¹ ¹ University of Illinois Urbana-Champaign ² Virginia Tech

1. Introduction

Problem

- Segmenting the foreground objects in a video sequence
- No manual annotation is available (unsupervised)

Challenges

occlusion, deformation, dynamic background

Contributions

- A novel graph construction method (Sec. 3)
- A novel saliency estimation technique (Sec. 4)
- State-of-the-art performance (outperforming deep learning) based methods) in the unsupervised setting (Sec. 5)

2. Overview

Problem definition

- Input: a video sequence $\{x_1, x_2, \dots, x_F\}$
- Goal: predict FG/BG segmentation $\{y_1, y_2, ..., y_F\}$

A diffusion-based approach

- Extract superpixels for each frame independently
- Diffuse the saliency estimate to denoise the rough initial prediction

3. Graph Construction

Spatio-temporal graph G = (V, E)

Long range non-local connections

- Search k nearest neighbors within adjacent f frames
- Weights = Visual similarity between superpixels
- Features: HOG + color histogram + (x,y) position

Intra-frame flow-based temporal connections

Superpixels with consistent flow vectors

Inter-frame edge-aware spatial connections

Connect neighboring superpixels and avoid crossing strong edges

4. Motion Saliency Estimation

Qualitative Results of Our Method

Failure Cases: complex motion

Quantitative Results

5. Experimental Results

DAVIS dataset

	NLC	MSG	KEY	FST	FSG	LMP	ARP	OURS-U
Deep features	-	-	-	-	\checkmark	\checkmark	-	-
Mean <i>M</i> ↑	0.641	0.543	0.569	0.575	0.716	0.697	0.763	0.776
¶ Recall ∅↑	0.731	0.636	0.671	0.652	0.877	0.829	0.892	0.886
Mean $\mathcal{M} \uparrow$ \mathcal{J} Recall $\mathcal{O} \uparrow$ Decay $\mathcal{D} \downarrow$	0.086	0.028	0.075	0.044	0.017	0.056	0.036	0.044
Mean <i>M</i> ↑	0.593	0.525	0.503	0.536	0.658	0.663	0.711	0.750
F Recall €↑	0.658	0.613	0.534	0.579	0.790	0.783	0.828	0.869
\mathscr{F} Recall $\mathscr{O} \uparrow$ Decay $\mathscr{D} \downarrow$	0.086	0.057	0.079	0.065	0.043	0.067	0.073	0.042
\mathscr{T} Mean $\mathscr{M}\downarrow$	0.356	0.250	0.190	0.276	0.286	0.689	0.352	0.243

Initialization Quality

Intersection over union (IoU) of the initialization on the DAVIS

	DAVIS					
	NLC	FST	FSG	LMP	Ours	
Training?	-	-	\checkmark	\checkmark	-	
Initial saliency	0.402	0.456	0.602	0.569	0.575	

Ablation Study

	 FDiff	IoII (
Inter-frame	Intra-frame	Long range		100 (
-	-	-	-	57.5
\checkmark	-	-	_	62.7
-	\checkmark	-	_	62.1
-	-	\checkmark	_	72.3
\checkmark	\checkmark	-	-	65.0
\checkmark	-	\checkmark	-	72.7
_	\checkmark	\checkmark	-	74.1
\checkmark	\checkmark	\checkmark	-	74.3
\checkmark	\checkmark	\checkmark	\checkmark	77.5

Boundary Dissimilarity

• Compute the **flow difference** between a pixel p and the boundary pixels

Distance to Boundaries

 Compute the smallest barrier distance between a pixel p to the boundary pixels

Segtrack v2 dataset

Sequence	KEY	FST	NLC	FSG	0
Average IoU	0.573	0.527	0.672	0.614	0.

•	FBMS	dataset

	NLC	POR	POS	FST	ARP	OURS
Average IoU	0.445	0.473	0.542	0.555	0.598	0.608