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1 Overview

In this supplementary document, we present additional results to complement
the paper. We first provide the implementation and training details of the pro-
posed model. We then analyze the performance contribution of several key de-
signs in the proposed model. More visual comparisons with the state-of-the-
art method are provided on our project website http://vllab.ucmerced.edu/

wlai24/video_consistency.

2 Implementation details

We implement our model using PyTorch [10]. We use a kernel of size 7 × 7 for
the first and the last convolutional layers and 3 × 3 for all other convolutional
and transposed convolutional layers. The number of filters is 32 and is multiplied
by 2 when the feature maps are downsampled. All the convolutional and trans-
posed convolutional layers (except the last layers) are followed by the instance
normalization [13] and leaky ReLUs (LReLU) [9] with a negative slope of 0.2.
There are 5 residual blocks between the encoder and decoder. At the end of the
decoder, we use a Tanh layer to constrain the range of the output into [−1, 1].

During training, we use a batch size of 4 (i.e., 4 sequences). For each sequence,
we sample 10 consecutive frames, which means that the long-term temporal
coherence is enforced over a maximum of 10 frames. We run the forward pass
of all 10 frames before updating the network parameters. We randomly crop
video frames to 192 × 192 and apply the data augmentation of random scaling
between [1, 2]×, random rotation for 90◦, 180◦ or 270◦, and horizontal flipping.
The same geometric transform is applied to all the frames in the same video. We
also adopt a temporal augmentation by reversing the order of sequences. The
initial learning rate is set to 1e−4 and decreased by a factor of 2 for every 20,000
iterations. We train our model with the ADAM solver [6] for 100,000 iterations.
During the training phase, only the image transformation network is updated
while the FlowNet and VGG are fixed.

3 Additional Analysis

We conduct experiments to provide more understanding on the effect of the
temporal loss, perceptual loss, and the ConvLSTM layer. We also analyze the
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effect of L1 and L2 norm and compare the results of multi-task and single-task
training. Finally, we show a failure case of the proposed method.

3.1 Effect of temporal and perceptual losses

Our training objective function is a combination of the content perceptual loss
Lp, short-term temporal Lst, and long-term temporal losses Llt. To further ana-
lyze the effect of each loss function, we train three models by setting the weights
of each loss term, λp, λst, and λlt, to 0, respectively. We evaluate the perfor-
mance of the variants using the WCT method [8] on the DAVIS test set [12]
and provide quantitative comparisons in Fig. 1.

Without perceptual loss. The model trained without the perceptual loss
generates blurry results. While a blurry video tends to have a low temporal
warping error, the perceptual distance is large, indicating that the model cannot
preserve the content of the processed video well.

Without short-term temporal loss. Without the short-term temporal loss,
the model cannot reduce the temporal flickering well. The temporal warping
error is close to that of the processed video in Fig. 1.

Without long-term temporal loss. When training without the long-term
temporal loss, the model does not capture the long-term temporal coherence
well and thus is prone to error propagation and occlusion. As shown in Fig. 2(e),
the blue regions on the ground suddenly change into different colors after a man
passing by. On the contrary, the model trained with all the losses produces stable
results without temporal flickering.

Method Ewarp Dperceptual

Vp 0.054 0
Bonneel et al. [2] 0.0312 0.0977

Ours w/o Lp 0.0222 0.1850
Ours w/o Lst 0.0518 0.0063
Ours w/o Llt 0.0427 0.0132
Our full model 0.0348 0.0194
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Fig. 1: Analysis on loss functions. (Left) We analyze the contribution of each
loss by setting the weight of each term to 0, respectively. (Right) The trade off
between perceptual similarity and temporal warping with different loss functions,
as compared to Bonneel et al. [2], and the original processed video, Vp.
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(a) Input video (b) Stylized video

(c) Without perceptual loss (d) Without short-term temporal loss

(e) Without long-term temporal loss (f) Ours

Fig. 2: Effect of loss functions. Without the perceptual content loss, the re-
sults are overly smooth and have a low perceptual similarity with the processed
video. While the short-term temporal loss is crucial to remove the high-frequency
flickering, the long-term temporal loss further reduces low-frequency jitter and
avoids error propagation (e.g., the lower-right corner in (e)). This figure contains
animated videos, which are best viewed using Adobe Acrobat.
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3.2 Effect of LSTM

To analyze the effect of the ConvLSTM layer, we train an image transformation
network without the ConvLSTM layer. To use the same amount of network
parameters, we increase the number of residual blocks from 5 to 9 in this model.
We show an example of stabilizing the results of a colorization method [4] on
the videvo dataset in Fig. 3. The model without the ConvLSTM layer produces
propagation errors (as shown on the ground of Fig. 3(c)). Our model with the
ConvLSTM layer successfully captures the spatio-temporal correlation of the
original input video and produces more visually pleasing videos.

(a) Input video (b) Colorized video (frame-by-frame)

(c) Without ConvLSTM (d) With ConvLSTM

Fig. 3: Effect of ConvLSTM layer. The model trained without the ConvL-
STM layer produces propagation errors, while our full model generates more
visually pleasing videos. This figure contains animated videos, which are best
viewed using Adobe Acrobat.

3.3 L2 norm v.s. L1 norm

We choose to use the L1 loss as it is a robust loss function commonly used in
several vision tasks, e.g., super-resolution [7] and inpainting [11]. However, we
find that the choice of the loss function is not crucial in the proposed model. Here
we train our model using the L2 loss for computing the content and temporal
losses and show the trade-off curve in Fig. 4(a). When setting r = 100, the
model using the L2 loss performs similarly to that using the L1 loss function.
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(a) L1 vs. L2 loss
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(b) Single-task vs. multi-task training

Fig. 4: Analysis on loss function and multi-task training.

The model optimized with the L2 loss can achieve comparable performance as
our current model with a proper weights setting, i.e., adjusting r = λt/λp.

3.4 Multi-task vs. single-task training

We train three single-task models using one style image for the WCT [8] (denoted
by MWCT), one enhancement model of the DBL [2] (denoted by MDBL), and
the shading layer of the intrinsic decomposition algorithm [1] (denoted by MI),
respectively. We evaluate the temporal warping error and perceptual distance
on the DAVIS test set and present the detailed results in Table 1. We also show
the trade-off curve between the average warping error and perceptual distance
in Fig. 4(b). It is interesting that the single-task models do not always achieve
the lowest temporal warping error and perceptual distance on the same task
used in training. As the single-task training is susceptible to overfitting for the
specific task, the single-task models may generate more artifacts and do not
generalize well to multiple tasks. In contrast, the multi-task model maintains
small temporal warping error and has the lowest perceptual distance.

3.5 Failure case

While our experimental results show that the proposed recurrent network per-
forms well on a variety of videos and generalizes well to multiple tasks, we do
observe some failure cases as shown in Fig. 5, where the brown color in the
mountain region is wrongly propagated to the sky. Using more videos and tasks
for training might be able to make our model more robust and reduce the error
propagation.
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Table 1: Comparison of single-task and multi-task training. The paren-
theses indicate that the task is used in training. We note that all the test videos
are unseen during the training phase.

Task
Temporal warping error Perceptual distance

MWCT MDBL MI Ours MWCT MDBL MI Ours

WCT [8]/antimono (0.037) 0.050 0.028 (0.035) (0.029) 0.012 0.048 (0.019)
WCT [8]/asheville 0.061 0.080 0.038 0.055 0.023 0.011 0.055 0.019
WCT [8]/candy 0.047 0.063 0.034 (0.045) 0.030 0.013 0.065 (0.023)
WCT [8]/feathers 0.033 0.045 0.025 0.029 0.025 0.015 0.047 0.016
WCT [8]/sketch 0.031 0.040 0.024 (0.023) 0.026 0.016 0.036 (0.021)
WCT [8]/wave 0.032 0.043 0.019 0.027 0.024 0.014 0.055 0.015
Fast-neural-style [5]/princess 0.049 0.064 0.039 0.047 0.046 0.031 0.076 0.029
Fast-neural-style [5]/udnie 0.043 0.060 0.034 0.042 0.028 0.015 0.039 0.017
DBL [3]/expertA 0.030 (0.035) 0.026 (0.028) 0.022 (0.016) 0.037 (0.011)
DBL [3]/expertB 0.028 0.031 0.022 0.025 0.021 0.015 0.040 0.011
Intrinsic [1]/reflectance 0.017 0.021 0.015 0.015 0.022 0.015 0.051 0.013
Intrinsic [1]/shading 0.010 0.015 (0.009) (0.011) 0.032 0.021 (0.030) (0.017)
CycleGAN [15]/photo2ukiyoe 0.028 0.033 0.017 0.026 0.021 0.015 0.052 0.012
CycleGAN [15]/photo2vangogh 0.031 0.036 0.019 0.029 0.024 0.017 0.067 0.016
Colorization [14] 0.024 0.028 0.019 0.024 0.022 0.015 0.047 0.013
Colorization [4] 0.024 0.027 0.018 (0.023) 0.021 0.015 0.044 (0.011)

Average 0.033 0.042 0.024 0.030 0.026 0.016 0.049 0.017

(a) Input frames (b) Processed frames

(c) Bonneel et al. [2] (d) Ours

Fig. 5: Failure case. The brown color in the mountain region is wrongly prop-
agated to the sky. This figure contains animated videos, which are best viewed
using Adobe Acrobat.
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