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1 Overview
In this supplementary document, we present additional results to complement the paper. First, we
provide the detailed configurations and parameters of the generator and discriminator in the proposed
Generative Adversarial Network. Second, we present the qualitative comparisons with the state-of-
the-art CNN-based optical flow methods. The complete results and source code are publicly available
on http://vllab.ucmerced.edu/wlai24/semiFlowGAN.

2 Network Architectures

We describe the network configuration and parameter settings of the proposed method in this section.

2.1 Generator G

We adapt the architecture of our generator from SPyNet [8], which builds on a spatial pyramid to
estimate optical flow in a coarse-to-fine manner. SPyNet has L pyramid levels, and each level has
a CNN sub-network. We denote the input image pairs as I1 and I2. At pyramid level l, the input
images are downsampled to the corresponding size, denoted by I l1 and I l2, respectively. We define
the warped image as Ĩ l2 = W(I l2, F

l
i ) where W is the bilinear warping function [6] that warps the

second input image I l2 according to the input flow F l
i . The sub-network concatenates I l1, Ĩ l2 and F l

i

as a 8-channels input and predicts the residual flow F l
r . The residual flow is then combined with the

input flow to produce a complete output flow F l
o = F l

i + F l
r. The output flow at the current level is

upsampled 2× and multiplied by 2 to be the input flow at the next level. We illustrate a two-level
architecture of our generator in Figure 1. In this work, we build a 5-level SPyNet as our generator.

Instead of using stacks of convolutional layers [8], we adopt the encoder-decoder architecture with
skip connections to effectively increase the receptive fields for each sub-network. Table 1 provides a
detail configuration of the sub-network in our generator. For level l = 0, there is not input flow, and
the input of the sub-network has 6 channels (i.e., the concatenation of I01 and I02 ).

2.2 Discriminator D

We use the convolutional PatchGAN [5] as the architecture of our discriminator. Given optical flow,
we compute the flow warp error image, which is the intensity difference between the first input image
and the warped second image. The discriminator learns to classify whether each N ×N overlapping
patch of the flow warp error image is produced by the ground truth flow (real sample) or the estimated
flow (fake sample) from the generator. We use 3 × 3 convolution followed by the Leaky ReLU
activation in our discriminator. The receptive field of the discriminator is determined by the number
of strided convolutional layers.
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Figure 1: Architecture of generator G. We adapt the SPyNet [8] approach as our generator. We
denote the input images and input flow at level l as I l1, I l2 and F l

i . The bilinear sampling function W
warps I l2 according to F l

i and produce Ĩ l2. The sub-network concatenates I l1, Ĩ l2 and F l
i as input and

predicts the residual flow F l
r. The output flow F l

o is the summation of F l
i and F l

r.

Table 1: Detailed configuration of a sub-network in our generator G. The input of the sub-
network is a concatenation of the first input image I l1, the warped second image Ĩ l2, and the input
flow field F l

i . The output is the residual flow F l
r.

Input Output Kernel Stride Input Output Input Output
name name size channels channels resolution resolution

Il1, Ĩl2, F l
i conv1a 3× 3 1 8 64 1× 1×

conv1a conv1b 3× 3 2 64 128 1× 1/2×
conv1b conv2a 3× 3 1 128 128 1/2× 1/2×
conv2a conv2b 3× 3 2 128 256 1/2× 1/4×
conv2b conv3a 3× 3 1 256 256 1/4× 1/4×
conv3a conv3b 3× 3 2 256 512 1/4× 1/8×
conv3b deconv3 4× 4 2 512 256 1/8× 1/4×

upconv3, conv3a conv3r 3× 3 1 512 256 1/4× 1/4×
conv3r upconv2 4× 4 2 256 128 1/4× 1/2×

upconv2, conv2a conv2r 3× 3 1 256 128 1/2× 1/2×
conv2r upconv1 4× 4 2 128 64 1/2× 1×

upconv1, conv1a F l
r 3× 3 1 128 2 1× 1×

Table 2: Detailed configuration of our discriminator D. Our discriminator takes a flow warp error
image as input and output a probability map for predicting each N ×N patch is real or fake sample.

Input Output Kernel Stride Input Output Input Output
name name size channels channels resolution resolution

flow warp error conv1 3× 3 2 3 64 1× 1/2×
conv1 conv2 3× 3 2 64 128 1/2× 1/4×
conv2 conv3 3× 3 2 128 256 1/4× 1/8×
conv3 conv4 3× 3 1 256 512 1/8× 1/8×
conv4 probability map 3× 3 1 512 1 1/8× 1/8×
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Figure 2: Architecture of discriminator D. We use the convolutional PatchGAN [5] as our
discriminator. The discriminator learns to classify whether each N ×N patch of the flow warp error
image comes from the ground truth flow (real sample) or the estimated flow (fake sample).

3 Training on Virtual KITTI Dataset

In this section, we provide additional results by training the proposed method with labeled and
unlabeled data from the same domain. We use the virtual KITTI dataset, which is a synthetic
dataset with 50 sequences of driving scenes, as the labeled dataset and the KITTI raw videos as the
unlabeled dataset. We train our model using supervised, unsupervised, baseline semi-supervised and
the proposed semi-supervised settings and provide the quantitative results in Table 3.

Comparing the the models trained on the FlyingChair and KITTI raw datasets, training on the
virtual KITTI dataset significantly reduce the error on the KITTI2012 and KITTI2015 datasets. The
proposed semi-supervised method performs favorably against the purely supervised and baseline
semi-supervised approaches. However, on the Sintel and FlyingChairs datasets, the supervised and
proproposed semi-supervised methods perform even worse than the unsupervised approach. The
reason lies in the fact that the scene and motion of the training datasets are much different from that
of the test sets. Both the virtual KITTI and KITTI raw datasets have a strong prior of forward camera
motion, while the Sintel and FlyingChairs datasets usually contain a main foreground object and
small camera motion. Therefore, the models trained on the virtual KITTI and KITTI raw datasets
cannot generalize well to other test datasets.

Table 3: Training with datasets from the same domain. “VKITTI” represents the Virtual KITTI
dataset and “KITTI” denotes the KITTI raw dataset.

Setting Training Datasets Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 FlyingChairs
EPE EPE EPE EPE Fl-all EPE

Supervised VKITTI 16.24 15.89 2.65 7.46 19.62% 14.95
Unsupervised KITTI 8.01 8.97 16.54 25.53 54.40% 6.66

Baseline semi-supervised VKITTI + KITTI 8.75 9.63 9.10 16.29 35.64% 8.85
Proposed semi-supervised VKITTI + KITTI 14.08 14.48 2.50 7.30 19.30% 13.08
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4 Qualitative Comparisons

In this section, we present visual comparisons with FlowNetS [3], FlowNetC [3] and SPyNet [8] on
the Sintel [2], KITTI 2012 [4], KITTI 2015 [7], FlyingChairs [3] and Middlebury [1] datasets.

4.1 Visual comparisons on the Sintel training dataset

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 3: Visual comparisons on the Sintel dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 4: Visual comparisons on the Sintel dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 5: Visual comparisons on the Sintel dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 6: Visual comparisons on the Sintel dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 7: Visual comparisons on the Sintel dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 8: Visual comparisons on the Sintel dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 9: Visual comparisons on the Sintel dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 10: Visual comparisons on the Sintel dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 11: Visual comparisons on the Sintel dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 12: Visual comparisons on the Sintel dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 13: Visual comparisons on the Sintel dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 14: Visual comparisons on the Sintel dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 15: Visual comparisons on the Sintel dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 16: Visual comparisons on the Sintel dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 17: Visual comparisons on the Sintel dataset.
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4.2 Visual comparisons on the KITTI 2012 training set

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 18: Visual comparisons on the KITTI 2012 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 19: Visual comparisons on the KITTI 2012 dataset.

12



Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 20: Visual comparisons on the KITTI 2012 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 21: Visual comparisons on the KITTI 2012 dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 22: Visual comparisons on the KITTI 2012 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 23: Visual comparisons on the KITTI 2012 dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 24: Visual comparisons on the KITTI 2012 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 25: Visual comparisons on the KITTI 2012 dataset.
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4.3 Visual comparisons on the KITTI 2015 training set

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 26: Visual comparisons on the KITTI 2015 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 27: Visual comparisons on the KITTI 2015 dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 28: Visual comparisons on the KITTI 2015 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 29: Visual comparisons on the KITTI 2015 dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 30: Visual comparisons on the KITTI 2015 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 31: Visual comparisons on the KITTI 2015 dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 32: Visual comparisons on the KITTI 2015 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 33: Visual comparisons on the KITTI 2015 dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 34: Visual comparisons on the KITTI 2015 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 35: Visual comparisons on the KITTI 2015 dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 36: Visual comparisons on the KITTI 2015 dataset.

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 37: Visual comparisons on the KITTI 2015 dataset.
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4.4 Visual comparisons on the FlyingChairs test set

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 38: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 39: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 40: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 41: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 42: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 43: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 44: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 45: Visual comparisons on the FlyingChairs dataset.

29



Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 46: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 47: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 48: Visual comparisons on the FlyingChairs dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 49: Visual comparisons on the FlyingChairs dataset.
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4.5 Visual comparisons on the Middlebury training set

Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 50: Visual comparisons on the Middlebury dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 51: Visual comparisons on the Middlebury dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 52: Visual comparisons on the Middlebury dataset.
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Input images Ground truth

FlowNetS [3] FlowNetC [3]

SPyNet [8] Ours

Figure 53: Visual comparisons on the Middlebury dataset.
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